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ABSTRACT 

An algorithm is developed for solving 
a special structured linear program. 
The particular structure studied has 
a large number of blocks coupled to- 
gether by a relatively few connecting 
equations. The method proposed is an 
extension of [2] and, from the basis, 
defines a working basis which is much 
smaller in size than the original. 
Two methods of updating the working 
basis are proposed. 



a 

INTRODUCTION ____________ 

In this paper we propose a device for solving a large scale linear programming 

problem of a special configuration. The method proposed is an extension of "Gener- 

alized Upper Bounded Techniques -   I" [2] to a  larger class of problems. 

The special  configuration   is the following: 

f 
=    b 

® 

Vi 

ALxL 

=    b, 

-    b. 

v X     + YiX,   + Y0  O        Yl    1 \\ 2(min) 

x is a vector of N components which can be written x = (x , x. x. ) 

where x.  has n. components and N = n + n.+.^+n. . 
'       i o   1     L 

A!  is an m x n. matrix; 

A.  is an m. x n. matrix 

M = m + m. + ...+m.  is the number of equations of the system which we will as- 

sume to be nonredundant and which can be written for short: 

e { 
Ax = b 

yx  = z(min) 
where A is an M x N matrix 

The basic assumption is that L »m 

Although we can save an important computational work with respect to the sim- 

plex method by applying the decomposition principle [1] to Problem (Jwe  will, rather, 

taking advantage of the very special condition L » m , extend the device given 

'    ' *- lmm_' . . 
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by Dantzlg and Van Slyke  In [2]:     From the basis of the system a "working basis" 

Is derived which   Is considerably smaller  in size.     Computations are done,  as much 

as possible,  on this working basis which result     In a substantial  savings   in com- 

putation and storage.    A way  is given to find the next working basis from  iteration 

to iteration. 

In a first part we give definitions and theorems; In a second part we give the 

general  method;  and  in a third part we give two different ways of updating. 

1.    SOME DEFINITIONS AND THEOREMS -    S.    will   refer  (dependIng on context) either 

to the set of components of    x.    or to the set of corresponding columns of the ma- 

trix    A  . 

Suppose we are at some stage of the process and that J3 is a basis for the 

system.  Let 

B! 

B. 

be the contribution of the set S. to the basis B . 

THEOREM 1:  At least m.  variables from each set S. (i ■ 1,...,L) are ba- 

sic. 

Proof:     Suppose    S      has  less than    m     basic columns.     Then there exists a KK P P 

linear combination of rows of    B      which vanishes:   (i)     X B    = 0 .    Now we can 
P P P 

define X ■ (0 0, \ , 0 0) such that XB = X B = 0 , which contradicts 
P P P 

the fact that    JB    is nonsingular. 

Remark:      It  follows from  (i)  that   if    B      has exactly    m      basic columns,   it   p '      p 

is nonsingular. 

THEOREM 2:     The number of  sets    S.    containing more  than    m.    basic variables 

is at most    m    . 
o 

*(' •'"•' *•      ,,, 
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Proof:    By the assumption of full   rank,  each basis has exactly    M    vectors. 

By Theorem 1, each set    S.     contains at  least    m.    basic variables;   this  leaves 

m      to make up sets of more  than    m.    basic variables. 
o r I 

Definition:    A set    S.    will  be said to be essential   if  it has more than    m. 
  i i 

basic variables; the set    S      is always put   in the essential class.     The other sets 

will  be called  inessential. 

§ =  [ij S.     is essential) 

|= {iS.     is  inessential] 
i 

II.     THE GENERAL METHOD - The reduced system  is defined by deleting the subsystems 

A.x.  = b.    where    S.     is   inessential.    The set of essential basic columns  restricted 
iii i 

to the  reduced system  is our working basis    B  . 

The value of  inessential  basic variables   is determined from: 

(1) B.x! » b. 
i   i i 

where B.  is square and nonsingular. These smaller systems are readily solved. 

THEOREM 3: The working basis is a basis for the reduced system. 

Proof: The number of equations in the reduced system equals the number of 

variables in the working basis since for each inessential set we remove exactly 

m.  equations and m. basic columns from the square basis B .    The columns of 

the working basis are linearly independent since they differ from the columns of 

the basis ^ by a bunch of zeros in the inessential part, and the columns of JJ 

are linearly independent. 

The size of the working basis B is m + S m. , considerably smaller than 

that of B . Note that the size of B changes from step to step, and that even 

the number of blocks in B (which is bounded by m ) changes from step to step. 

»"—"*.' . mmwß    •-  -"~ ^^""■■"WT 
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Suppose we have a basis   J3  ,  the columns of which will  be denoted    jr   (j = l,. 

hi I    I 
Let    B «  [B    ,   i = 1,...,  B]    be the corresponding working basis. 

The problem  is: 

a) To determine which column enters the basis; 

b) To determine which column is dropped from the basis. 

(2) 

I) Let 

jj = (TT . TT »TT.) be the price vector corresponding to jB ; 

TT ^ (TT , TT,  ie§)   be the price vector corresponding to B ; 

Y = (y > Yi»*^^!^ ^e  ^e cost vectorI 

£ « (c , c. c.) be the cost vector associated with B^ ; 

c = (c. j ie§)      be the cost vector associated with B . 

The equation 

TT  B   ■   C 

defines the price vector.     The point  is that this equation can be written 

(2') rrB = c       ; 

(2") TT  BI    +   TT.B.    =   C. 
0    1 II I I «5 

We will   later give different ways of solving  (2');   (2') being solved,  substi- 

tuting    TT      in (2")      gives    TT.     in an easy way. 

Let    A      and    A1      denote the    s        column of matrices    A      and    A1     respec- 
a a a a 

t ively. 

AS = is the corresponding column of A  . 

■*«* 
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The column to enter the basis will   be given by the usual   criterion: 

-s _    s .s s 

CT      Ys     "■ -s       0 < T < L        T 
Min (Yi-üAJ) 

1 < j  < n 

s s If    v    > 0  , we have found an optimal  basic solution;   if not, we bring   A      into 
CT ""CT 

the basis. 

2) A e S  .  If S  is essential we have not to worry about the inessential 
"CT CT CT 

part of the problem which  remains unchanged.    We simply pivot   in the  reduced system 

with the usual  criterion for picking the column to drop.    We then have to update 

the  right-hand side,  and the entering column  is the reduced system.    That  is,  to 

solve 

(3) B ÄS    -    AS 

CT CT 

(4) B b      =    b 

We postpone to a  later part the discussion of how  (3) and  (4) are actually 

solved.    Note that   in this case, since    B    is assumed to be of a  reasonable size, 

the updating  is simple. 

If    S      is not essential we have to solve,   instead of (3) and  (4),  the more 
CT 

complicated systems: 

(3') B ÄS - As ; 
 CT   —CT 

(V) B b 

We will now prove that solving (3') and (V) is, in fact, equivalent to solving (3) 

and (4). 

Let Ä|S , b denote the part of the updated columns which correspond to the 
CT 

working basis. 

f ■ - -    • eimiiimmm 
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This can be written: 

(5) 

0 

0 

0 

0 

(6) 

Bk   bk ■ bk 

B b     =    b 
a a a 

i 

(3-)    BÄ':-[A;']-[B
0
i]Ä: ; ^ 

. L L 

Bb = b -    S   |   ' Ibi 
iel LQ   J    ' 

And we see that if we suppose the systems in (5) and (6) are of very low order and 

that their solution is readily at hand, we have only to solve (3") and (V). which 

are exactly of the same type as (3) and (4). 

By the usual simplex criterion we now know which column is to be dropped. Let 

us suppose that the column to be dropped belongs to the set S .  Two cases can 
T 

occur: 

a) S  Is inessential, so S  can only be S . Then the pivoting Is 
T TO 

only done  In the   inessential   sub-basis    B    ,  and  the working basis does not change. 

— ---. ■     .., 



b)  S  Is essential, so the method of pivoting is as follows: 

Step 1  -  Introduce S  In the essential set (the size of the 

working basis Is Increased by m ) . 
o 

Step 11 - Pivot In the new reduced system. 

Step 111 -  If the number of variables in S  is now m .  make 
    T T 

S      inessential   (the size of the working basis Is de- 

creased by    m_)   . 
T 

The algebraic work  Involved   In Equations   (2').   (3) and   (4)     (or  (3") and   (V)   ) 

can be done   In essentially two ways.    The first  Is the  Revised Simplex Method;   the 

justification of using  it  is that the working basis will   remain of a reasonable size. 

The second  Is to solve the system, Instead of  Inverting the matrix    B  , by a trian- 

gularlzatlon process which  Is  inspired of  [3]. 

III.    UPDATING PROCESS - 

A.    Revised Simplex Method:     Suppose we have an  Inverse of the working basis 

• 1 V«— 1 it 
B'   ; we want  to find    B*'      where    B       is the basis for the next   Iteration.     If    S a 

is essential, we pivot   In the reduced system and simply apply the  revised simplex 

algorithm  in the  reduced system.     If    S      and    S     are  Inessential,  the working 
a      T 

basis does not change.  If S  is Inessential and S  is essential, we will de- 
0 T 

scribe the throe steps outlined above. 

If the essential set S  had more than m ., basic columns beforehand, this 

will not be the case. 

WfWigJH ttmru^immmmmmmmmK^^ßmrm^^ 



Step 1. Define 

8 

B 

B1 

a 

0 B 
7 

a« 
B1 
a 

then it is easy to see that: 

~-l B ' 8-' Q' 

0 B-] 

o 

with Q' = B^'OB"1 
a 

Step 2.    Now we are as   in the first case and we use the modified simplex meth- 

od to get    B (where    B      is obtained from    B    by pivoting  in the reduced system) 

Step 3.     If    B       is now square, we can  rearrange the equations and variables 

in    B      so that  it  looks  like this: 

i*. 
B* 

B' 
T 

B 
T 

I*'1 
B*"1 a* 

T 

B"' 

* -i'i. 1 
B  and B    are now obtained by dropping the column and rows corresponding to 

B . 
T 
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B.    Compact Basis Trianqularization:    Any equations of the type    Bx = b    or 

TTB - c   where    B    is an    m x m    nonsingular matrix can be solved by triangularizing 

B  (see [3])'     It has been pointed out  in [3] that triangularizing may be an efficient 

method  in cases where    B    has a special  structure  (such as block angular). 

Triangularizing  is equivalent to pre-multiplying    B    by a set of elementary 

matrices    E. 

T = E, ,   E- ,... »E B 
!      z m 

where,   in the notation of  [3], 

T     is the triangular!zed form of    B  ; 

E.,...,E      is the compact    E-structure. I m 

To solve    rrB = c  (Equations  (2') and   (2")  ), we solve 

TT T  =   C 

and 
* 

TT =   E. ,    £-»••• »E   TT 

To solve Bx = b (Equations (3) .(z*). (5) • (6) ). we find 

b = E, , E, E b 
I  2    m 

and solve 

Tx = b 
* 

Having determined S  and S , we now show the steps in pivoting. 
a      T 

If S  is essential, we pivot in the reduced working basis.  If S  and 
er ' o 

S      are  inessential, we pivot   in the smaller basis    B    .     If    S      is   inessential 
T a      o 

and S  essential, then we show the three steps. 
T 

Let    T      be the triangularized form of    B    , E      its compact    E-structure, 
a o       a 

and    J    the permutation matrix used to triangularize    B .     Let    T    be the 

HWB-MWWP»» 
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triangularized form of    B  , and    E     its compact    E-structure. 

Step I. Introducing    S      into the essential  class, we modify the working 

basis by introducing    B       into it.    We get 

New T 

T 
a 

0 

EJQ T 

New E 

E 0 

0 E 

Step 2,   Apply the pivot operation in the new B . 

Step 3.   Assume |  has become inessential; to remove this block from the 

fh t h 
working basis,  assume the columns of    S      in    B    lie between    i  "    and     l+m 

3 T T 

column.    Define 

i i+m 
T 

Tl 0 

T2 

rk T3 

i+m 

i 
i+m 

T 

'Ei Ek 

E2 

S 

i+m 

Then 

Note:  If we introduce the inessential set S  at the top LHS of the T and 
a 

E , we always obtain the new E structure in this manner. 
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triangularIzed form of    B  , and    E    its compact    E-structure. 

Step  1. Introducing    S       into the essential   class, we modify the working 

basis by  Introducing    B      into  It.    We get 

New T 

T 
1   CT 

0          1 

EJQ T 
i 
i 

B' 
a 

New E 

E 0 
_a  

0 E 

1 

Step 2.        Apply the pivot operation  in the new    B . 

Step 3.        Assume    §     has become   Inessential;  to remove this block from the 

•it. fU 

working basis, assume the columns of S  in B lie between  i   and  i+m 
T T 

column.    Define 

T = 

i i+m 
T 

Ti 
0       1 

T2 

\ 
T3     1 

I+m 

• I+m 
T 

El E4 

E2 
| 

E3 

i+m 

Then 

! Note:  If we Introduce the Inessential set S  at the top LHS of the T and 
o 

E  , we always obtain the new    E    structure  in this manner. 

- **-' j ^ • - 
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1) 

new T 

TI 0 

\ T3 

new E 

El *k 

h 

and TT-T2 
E    « E, 

T        2 

In conclusion,   It seems that Method A may be preferred   If the working basis 

is of small   size and   if the process of the  revised simplex algorithm on  it   Is not 

too long, as Method  B will  be preferred   if the working basis   itself  Is of  large 

dimension. 

...    __--_ -       ■ rt^r»- ,   
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